Note191 キス出来る人数(Kissing number)

ちょっと息抜きに。

単位円の周囲とキス出来る単位円は幾つあるか?。もちろん6個でそれ以上はキスできない。
イメージ 1

では3次元、つまり単位球ではどうだろうか?
https://cdn-ak.f.st-hatena.com/images/fotolife/c/cat_falcon/20190805/20190805145630.jpg
1個は当然キスできる。2個、3個、4個とキス出来ている。この問題についてはI.NewtonJ.Gregory が調べている(1694年)。最大12個(以上)だというのは分かる。
イメージ 3

実際にやってみると結構隙間があるのでこの隙間を寄せ集めてもう1個並べられそうだが、結局Newton にも分かりませんでした。そしてこの問題が解かれたのはおよそ200年以上経った1953年、B.L. van der Waerden とK. Schutte によって13個は無理で最大12個である事が証明された。

ちなみにCGは最適化計算の手法で球の位置を求めた。
https://cdn-ak.f.st-hatena.com/images/fotolife/c/cat_falcon/20190805/20190805145633.jpg

もっと賢いやり方はあるんだろうけど考えるのが面倒だったので上の式をそのまま計算させた。球が重ならないようにペナルティーで制約条件を付加した。

イメージ 5


4次元の場合はどうなのか?
24個だそうだ。24個である事が証明されたのはつい最近2003年(O. Musin)。